Analyticity for the Navier Stokes and Related Equations with Initial Data

نویسندگان

  • Zoran Grujic
  • Igor Kukavica
چکیده

We introduce a method of estimating the space analyticity radius of solutions for the Navier Stokes and related equations in terms of L p and L norms of the initial data. The method enables us to express the space analyticity radius for 3D Navier Stokes equations in terms of the Reynolds number of the flow. Also, for the Kuramoto Sivashinsky equation, we give a partial answer to a conjecture that the radius of space analyticity on the attractor is independent of the spatial period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyticity estimates for the Navier-Stokes equations

We study spatial analyticity properties of solutions of the Navier-Stokes equation and obtain new growth rate estimates for the analyticity radius. We also study stability properties of strong global solutions of the Navier-Stokes equation with data in H, r ≥ 1/2 and prove a stability result for the analyticity radius.

متن کامل

Existence and generalized Gevrey regularity of solutions to the Kuramoto–Sivashinsky equation in R

Motivated by the work of Foias and Temam [C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal. 87 (1989) 359–369], we prove the existence and Gevrey regularity of local solutions to the Kuramoto–Sivashinsky equation in Rn with initial data in the space of distributions. The control on the Gevrey norm provides an explicit estimate of the a...

متن کامل

Space Analyticity for the Nonlinear Heat Equation in a Bounded Domain

In [FoT], Foias and Temam introduced a method for estimating the space-analyticity radius of solutions of the Navier Stokes equation with periodic boundary conditions. For the numerous applications, see e.g. [CEES, CRT, DTH, FT, Gr, K, LO]. In our previous paper [GK], we did not use the Fourier series and were thus able to treat the Navier Stokes and other semilinear parabolic equations with si...

متن کامل

Local analyticity radii of solutions to the 3D Navier–Stokes equations with locally analytic forcing

We introduce a new method for establishing local analyticity and estimating the local analyticity radius of a solutions to the 3D Navier–Stokes equations at interior points. The approach is based on rephrasing the problem in terms of second order parabolic systems which are then estimated using the mild solution approach. The estimates agree with the global analyticity radius from [16] up to a ...

متن کامل

Regularity of Solutions to the Navier-stokes Equations Evolving from Small Data in Bmo−1 Pierre Germain, Nataša Pavlović, and Gigliola Staffilani

In 2001, H. Koch and D. Tataru proved the existence of global in time solutions to the incompressible Navier-Stokes equations in R d for initial data small enough in BMO−1. We show in this article that the Koch and Tataru solution has higher regularity. As a consequence, we get a decay estimate in time for any space derivative, and space analyticity of the solution. Also as an application of ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998